
UNIVERSITY OF CALIFORNIA,
IRVINE

Generating natural-language descriptions of code with the GPT language model

THESIS

submitted in partial satisfaction of the requirements
for the degree of

BACHELOR OF SCIENCE

in Computer Science

by

Brian Minh-Tuan Chu

Thesis Advisor:
Richard Futrell

2022

© 2022 Brian Minh-Tuan Chu

TABLE OF CONTENTS

Page

LIST OF FIGURES iii

LIST OF TABLES iv

ABSTRACT OF THE THESIS v

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Outline . 3

2 Method 4
2.1 Model . 4
2.2 Dataset . 4

2.2.1 MBPP . 4
2.2.2 OEIS . 5

2.3 Obfuscation . 6
2.4 Prompt Engineering . 10
2.5 Evaluation . 10

3 Results 12
3.1 Selected Data (Non-obfuscated) . 12
3.2 Commentary . 16

4 Discussion 18
4.1 Results . 18
4.2 Future Directions . 19

ii

LIST OF FIGURES

Page

2.1 Examples of code obfuscations . 6

3.1 length of prompt versus BLEU score . 13
3.2 length of prompt versus Jaccard score . 13
3.3 length of prompt versus cosine score . 13
3.4 Spearman correlation rho and p-values . 13
3.5 Prompt: Write a python function to count minimum number of swaps required

to convert one binary number represented as a string to another. 13
3.6 Prompt: Write a function to sort a dictionary by value. 14
3.7 Prompt: write a function to find the third side of a right angled triangle. . . 15
3.8 Sample completion for task: Write a python function to count minimum num-

ber of swaps required to convert one binary number represented as a string to
another. 17

iii

LIST OF TABLES

Page

iv

ABSTRACT OF THE THESIS

Generating natural-language descriptions of code with the GPT language model

By

Brian Minh-Tuan Chu

Bachelor of Science in Computer Science

University of California, Irvine, 2022

Richard Futrell, Advisor

Much work has been done to evaluate how well the GPT model is able to translate English

language text to code. In this paper we explore in the opposite direction, and evaluate

GPT’s ability to comprehend code and generate English descriptions. Using the Mostly

Basic Python Problems dataset published by Google, we take the code snippets from each

problem and apply various obfuscations before generating prompts to give to the model,

in order to see if there is a correlation between prompt length and quality of the final

completion (as measured by distance metrics between the generated text and the original

problem description). Overall, we find that there is no such correlation, which indicates

that we may have to use some other metric or quality of the prompt to predict the overall

performance of the model.

v

Chapter 1

Introduction

1.1 Background

Large language models are commonly used to help computers perform natural language

processing tasks; in particular, the BERT model is the primary component powering the

Google search engine 1, and the GPT family is used in products such as Github Copilot,

which is used to take incomplete samples of code and generate new code that accomplishes

the task at hand. These models are large in the sense that they are often implemented as deep

neural networks with billions of parameters, and trained on large language corpora comprised

of millions of documents. For example, researchers training the GPT-3 model utilized the

Common Crawl dataset, consisting of the contents of publically available websites on the

internet, as well as Wikipedia and other collections of literature adding up to a total of

almost 500 billion English-language tokens.

In the case of the GPT-Codex model, researchers took the base GPT-3 model which is

trained on natural language data, and extended it further by fine tuning on text taken from

open-source code repositories on Github and elsewhere on the internet. As a result, Codex is

also good at generating completions when prompted with snippets of code in programming

languages like Python. As such, its skills at completing code in conjunction with its pre-

1https://www.blog.google/products/search/search-language-understanding-bert/

1

existing ability to process English language text makes Codex a useful tool for research into

the heavily studied field of translating English language text into computer code. After the

beta release of the Codex model, many projects and papers were published that demonstrated

its effectiveness at the task of taking English text describing a goal such as formatting a

website or implementing a neural network architecture and subsequently generating HTML

code that accurately describes the requested layout, or Python Tensorflow code that follows

the high-level specification given in the input.

1.2 Motivation

It is evident that the ability to take English descriptions and generate code from them

is very useful in many cases, since it reduces the cognitive overhead of translating from

high-level specifications to the low-level implementation details when actually writing code,

speeding up the process of developing programs. However, it is also useful to go into the

opposite direction and convert code snippets back into English text. From the perspective

of code documentation, much work has been done to automate the process of automatically

generating comments in code that accurately describe what task the code is doing. Common

heuristics include parsing function names and method calls to get a general description of the

code. However, there are flaws to current approaches to this problem. If the method names

are not reflective of the actual task (i.e. if a function is named addTwoNumbers() but the

function actually subtracts the numbers) then the generated documentation is inaccurate

and is therefore useless at its purpose. Having intelligent methods of understanding code

well enough to document is therefore a useful task.

It is also of scientific interest to evaluate how well the GPT model understands its lin-

guistic inputs; English language prompts result in completions that are strikingly realistic,

but the question still remains as to how much the model is capable of understanding its

inputs versus simply generating statistically likely outputs. By probing the model with how

2

well it comprehends code we can get a better idea of its ability to comprehend its inputs,

especially given that programming languages have a set structure with no ambiguity as to

what it means, as opposed to natural languages that are more ambiguous.

1.3 Outline

The GPTmodel is specifically designed to perform text completion tasks where it is prompted

with a text snippet as its input, and outputs text that best completes the prompt. As a

result, one of its strengths is zero to few-shot learning: Given a small number of samples, the

model is able to extrapolate from its input and generate high quality completions without

having to specifically train on a larger dataset of inputs. Consequently, we aim to exploit

this capability to evaluate how well GPT describes code.

3

Chapter 2

Method

2.1 Model

We aim to evaluate the strengths of the GPT family of models on describing code. As such,

our main focus is on evaluating the GPT-Codex model in particular, which is based on the

GPT-3 model trained specifically on text, but has been fine-tuned and trained to also work

well at predicting code snippets. In order to access the model and to generate completions,

we use the OpenAI API to pass prompts to the model and to retrieve its output.

2.2 Dataset

Our goal is to evaluate how well the GPT model can describe code, which requires datapoints

comprised of a code snippet to be described, as well as a code description that serves as the

base truth with which we compare the completion generated by GPT.

2.2.1 MBPP

We use the ”Mostly Basic Python Problems” dataset published by Google, consisting of

roughly 1,000 Python problems. Each problem consists of a English-language description

4

of the task to be solved, and a solution written in Python. Because the problems are

crowdsourced from various people, the authors of this dataset also provide a sanitized subset,

where the problems and solutions are assessed by hand to ensure quality. For example,

problem statements that are considered to be too vague, or Python solutions that use non-

standard programming idioms like taking a list and its size as parameters when just the list

would suffice, are filtered out from this subset of problems.

Since the sanitized subset of snippets is idiomatically correct and because the problem

statements are clear to understand, we expect that those traits make it better for the purpose

of generating prompts, since the code is a straightforward implementation of the problem

statement with no pitfalls that make it harder to comprehend, and so the model should be

able to understand what the task at hand is.

2.2.2 OEIS

Before we settled on using the MBPP dataset, we originally had planned on using the

Online Encyclopedia of Integer Sequences as our source of code snippets and natural language

descriptions. This was because the encyclopedia lists descriptions of many different numerical

sequences and cites verifiably correct code snippets from research papers that generate said

sequences. By scraping the OEIS website for entries that had Python code snippets in

particular, we were able to collect almost 7,000 sequences.

However, there were some flaws with this approach since the sequences are from math-

ematics papers and so require prerequisite knowledge in number theory. Descriptions of

sequences might refer to high-level concepts that aren’t necessarily common knowledge, or

sequences might be named after a specific person, in which case the description isn’t very

useful to a math layperson. Also, due to the interconnected nature of math, there are many

ways to implement the same sequence 1, so the description may describe one way of evalu-

1For example, the nth element in row k of Pascal’s triangle can be seen as either the sum of the two
numbers immediately above it in the above row of the triangle, or simply

(
n
k

)
, which certainly affects the

code that would generate the sequence.

5

Figure 2.1: Examples of code obfuscations

Original Obfuscated

map(f , xs) [f (x) for x in xs]

f i l t e r (f , xs) [x for x in xs i f f (x)]

for x in xs :
do something with x

s e qu en c e i t e r a t o r = i ter (xs)
while True :

try :
x = next (s e qu en c e i t e r a t o r)
do something with x

except S top I t e r a t i on :
break

y = {x for x in xs}
y = set ()
for x in xs :

y . push (x)

ating the sequences and the code might express another. As such, this makes it harder to

evaluate the completions from the GPT model to see how closely it matches with the original

description. We considered ways to get around this, like crowdsourcing mathematicians to

help evaluate completions, but it was ultimately too impractical to accomplish.

2.3 Obfuscation

Because GPT is trained on a very large corpus of text from the internet, there is a chance

that the model has memorized some of its inputs, so when given a code snippet it might

just repeat the description that the code snippet was associated with. To make sure that

the model is actually comprehending its input and not repeating previous training data,

we perform some transformations on the Python code using the Python AST library. For

example, given a call to the filter or map function with an iterable as input, we can rewrite

that as a for loop that iterates over the iterable. In addition, Python has some syntactic

features that we can rewrite as well: list/set comprehensions can be unrolled into loops. By

applying each obfuscation, we can get new snippets of code that accomplishes the same task

as the original code, but rewritten in such a way that it is not likely to have been seen before.

6

In other words, we are only changing the syntactic structure. If the model truly understands

the code, it should still be able to express the semantic intent.

Listing 2.1: Implementation of obfuscation

class ReplaceReduce (a s t . NodeTransformer) :

’ ’ ’

y = reduce (f , xs , i n i t i a l ?) −>

r e d u c e i t e r = i t e r (xs)

y = next (r e d u c e i t e r) OR y = i n i t i a l IF i n i t i a l e x i s t s

f o r i t e r e l emen t in r e d u c e i t e r :

y = f (y , i t e r e l emen t)

’ ’ ’

def i n i t (s e l f) :

s e l f . i t e r i n d e x = 0

def v i s i t A s s i g n (s e l f , node) :

match node . va lue :

case as t . Ca l l (func=ast .Name(id=’ reduce ’)) as r educe func :

s e l f . i t e r i n d e x = s e l f . i t e r i n d e x + 1

ta rg e t = node . t a r g e t s [0] # assume s i n g l e assignment ,

not l i k e a = b = 1

func = reduce func . args [0]

i t = reduce func . args [1]

i t e r a s s i g n = ast . Assign (t a r g e t s =[as t .Name(id=’

r e du c e i t e r ’+str (s e l f . i t e r i n d e x) , ctx=ast . Store ())

] ,

va lue=ast . Ca l l (func=ast .Name(

7

id=’ i t e r ’ , ctx=as t . Load ()) ,

a rgs=[i t] ,

keywords = [])

)

i n i t i a l a s s i g n = ast . Assign (t a r g e t s =[t a r g e t] ,

va lue=ast . Ca l l (func=ast .

Name(id=’ next ’ , ctx=ast .

Load ()) ,

a rgs=[as t .

Name(id=’

r e du c e i t e r

’+str (

s e l f .

i t e r i n d e x

) , ctx=

ast . Load

())] ,

keywords = [])

i f len (

r educe func

. args) ==

2 else

r educe func

. args [2])

loop = ast . For (t a r g e t=ast .Name(id=’ i t e r e l emen t ’+str (

s e l f . i t e r i n d e x) , ctx=ast . Store ()) ,

i ter=ast .Name(id=’ r e du c e i t e r ’+str (s e l f .

i t e r i n d e x) , ctx=ast . Load ()) ,

body=[as t . Assign (t a r g e t s =[t a r g e t] ,

8

value=ast . Ca l l (func=

func ,

args=[

target

, a s t

.Name

(id=’

i t e r e l emen t

’+str

(s e l f

.

i t e r i n d e x

) ,

ctx=

ast .

Load

())] ,

keywords

= []))

] ,

o r e l s e = [])

return [i t e r a s s i g n , i n i t i a l a s s i g n , loop]

case :

return node

9

2.4 Prompt Engineering

Our main line of inquiry lies in the prompts given to GPT: our overall goal is to evaluate

how well the model describes code. However, the quality of the model’s output is dependent

on the input to a certain degree. So, what we need to find out is which prompts are best to

get high quality descriptions, and what makes them different from other prompts?

The GPT model works by taking in a prompt and returning an output that best completes

its input. However, the model is also powerful enough that it not only completes the text,

but the format of the text as well. We can take advantage of this to make GPT generate

text that describes programming-language inputs by prompting the GPT model as follows:

<code snippet A>

The above code is <code description A>.

<code snippet B>

The above code is <code description B>.

<code to be described>

The above code is

where we take two problems to prime GPT, and take a third code snippet for GPT to

describe in its completion. By using a prompt template like this, we can then generate

multiple prompts in a consistent manner where the main variable is the choice of code

snippets for the model to emulate.

2.5 Evaluation

To consistently evaluate prompts for GPT, we set aside an arbitrary problem from the

sanitized subset for GPT to complete. Using the rest of the problems, we then generate

10

prompts by selecting pairs at random. Then, we evaluate how well GPT can predict the

completion for the prompt by taking the description and the completion provided by GPT

and calculating various text distance metrics between the two texts. Specifically, we tokenize

the texts, and calculate the Jaccard similarity, cosine similarity, and BLEU score between

the target description and the completion.

There are many qualitative ways to say how a prompt differs from another; for example,

you could state that one prompt is more complex than another since the task statement is

more involved. However, since these are highly subjective, it is harder to draw meaningful

conclusions on such bases. Instead, we calculate quantitative metrics based on the length of

the prompt, since that seems to be the main quantity that differs between prompts. At first

glance, this is also a useful heuristic for qualities like complexity since shorter prompts are

generally simpler and longer prompts are more complex.

In order to evaluate how much the length of the prompt affects the overall quality of the

generated text, we calculate the Spearman correlations between the length of the text and

each metric; as we see in the results, the data seems to cluster around certain values with a

lot of outliers and so a linear regression would not be appropriate in this case.

11

Chapter 3

Results

3.1 Selected Data (Non-obfuscated)

12

Figure 3.1: length of prompt versus BLEU score

Figure 3.2: length of prompt versus Jaccard score

Figure 3.3: length of prompt versus cosine score

Figure 3.4: Spearman correlation rho and p-values

Rho P-value

BLEU -0.0358 0.4250
Jaccard -0.0405 0.3660
Cosine -0.0091 0.8399

Figure 3.5: Prompt: Write a python function to count minimum number of swaps required
to convert one binary number represented as a string to another.

13

Rho P-value

BLEU -0.0068 0.8801
Jaccard -0.0511 0.2537
Cosine -0.0445 0.3203

Figure 3.6: Prompt: Write a function to sort a dictionary by value.

14

Rho P-value

BLEU -0.0506 0.2591
Jaccard -0.0801 0.0735
Cosine -0.0146 0.7448

Figure 3.7: Prompt: write a function to find the third side of a right angled triangle.

15

3.2 Commentary

In the above graphs we can visually see that there is little to no correlation between the

length of the input prompt and the BLEU/Jaccard/cosine similarity metrics. Calculating

the Spearman correlation further confirms this, as we get rho values that are very close to

zero and p-values higher than the standard cutoff of 0.05. For the purposes of identifying

an ideal prompt for GPT to describe code, we conclude that the length of the prompt is

probably not related to the overall quality of the output and that another, as yet unknown

metric is better suited for this purpose.

One thing to note with the BLEU scores is that, barring a few outliers, the data seems

to bottom out at a score of just under 0.1. This is because of the structure of the prompt

and the way in which GPT generates completions. Since the code problem descriptions are

phrased imperatively (e.g. ”write a function to do X”), GPT generates outputs that also

follow that sentence structure. As such, because the first part is the same across most of the

outputs, even if the rest of the generation is completely different, the BLEU score tends to

stay above that floor.

16

(a) Prompt

def centered_hexagonal_number(n): return 3 * n * (n - 1) + 1

The above code is a function to find nth centered hexagonal number.

def find_star_num(n): return (6 * n * (n - 1) + 1)

The above code is a function to find the n’th star number.

def min_Swaps(str1,str2) :

count = 0

for i in range(len(str1)) :

if str1[i] != str2[i] :

count += 1

if count % 2 == 0 : return (count // 2)

else : return ("Not Possible")

The above code

(b) Completion

shows an interesting way to find minimum number of swaps whose result will be

one of the star numbers.

def nth_star_number(n) :

if n < 1 : return 0

dec_part = n % 1

lower_val = floor(n)

upper_val = ceil(n) # if n is an integral number if dec_part == 0 :

Figure 3.8: Sample completion for task: Write a python function to count minimum number
of swaps required to convert one binary number represented as a string to another.

17

Chapter 4

Discussion

4.1 Results

Previously, we mentioned that length can sometimes be a good indicator of complexity when

it comes to designing prompts for GPT to complete. More complex problem descriptions

often need more words to express, and so result in longer prompts. However, we can see

in our results that length does not have a strong correlation with the quality of the final

completion. This indicates that one of our assumptions is possibly wrong or that it is entirely

off course: length might not have any connection to the complexity of the prompt at all, or if

it does, then the complexity has no bearing on the quality of the prompt. In either case, we

would have to find some other quantity associated with each prompt that has a correlation

with the quality of the generated output.

Besides the prompt, we could also consider the effect that the obfuscations have on GPT.

Certain obfuscations are idiomatic and are commonly used in real-world code like that which

GPT was trained on. For example, transforming list comprehensions to loops and back are

commonplace. However, converting calls to the map/filter/reduce functions to calls to the

next() function on an iterator are more complicated and definitely non-idiomatic. Even

human programmers would avoid using such a construct and so the code would definitely be

18

much rarer in training data.

4.2 Future Directions

As such, we can address these issues in a future iteration of this work. Because the main

difference we see in the prompts is generally how complex they can be, we would have to

find another way to quantify complexity besides length. Another way to predict complexity

could be how rare each word is in context, since simple tasks are more common and so would

have more common words, whereas something more complex could have words that don’t

appear as frequently, hence seem to be more complex. By calculating some sort of rarity

score, we could then have another metric to correlate with the quality of the final generation.

For the obfuscation portion, we can generate more obfuscations of the code; list com-

prehensions and other functional programming constructs are not the entirety of Python,

and there are potentially more areas in the syntax we can explore to convert into something

that is equally as unfamiliar to GPT from the training data, but that is qualitatively more

idiomatic and easier to comprehend.

19

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT OF THE Thesis
	Introduction
	Background
	Motivation
	Outline

	Method
	Model
	Dataset
	MBPP
	OEIS

	Obfuscation
	Prompt Engineering
	Evaluation

	Results
	Selected Data (Non-obfuscated)
	Commentary

	Discussion
	Results
	Future Directions

